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Apart from the FCHC (face-centered hypercube), Nasilowski's Pair interaction 
lattice gas (PI) is the only known lattice gas automaton for three-dimensional 
hydrodynamic simulations. Unfortunately, the viscosity of PI is not isotropic. In 
order to determine the degree anisotropy, we derive fluid dynamic equations for 
the regime of compressible viscid flow. From relaxation measurements of waves 
propagating in various directions we compute the physically relevant dissipation 
coefficients and compare our results with theoretical predictions. Although PI 
shows a high degree of anisotropy, we define the mean value of the dissipation 

2D = 0.35, tWO- tensor as effective shear viscosity. Using this value of roe 
dimensional simulations of flow past a cylinder yield drag coefficients in 
quantitative agreement with wind tunnel measurements over a range of 
Reynolds numbers of 5-50. Three-dimensional simulations of flow past a sphere 
yield qualitative agreement with various references. A fit of the results to a semi- 
empirical curve provides an effective value of v3e~ = 0.21 for a range of Reynolds 
numbers from 0.19 to 40. In order to check for finite-size effects, we measured 
the mean free path 2 and computed the Knudsen numbers. We obtained 2 ~ 1 
lattice unit, corresponding to Kn =0.01 (2D) and Kn = 0.1 (3D). We found no 
significant finite-size effects. 

KEY WORDS: Viscosity measurements; drag coefficients; 3D simulations; 
finite-size effects. 

1. I N T R O D U C T I O N  

I n  1986 F r i s c h ,  H a s s l a c h e r ,  a n d  P o m e a u  ( F H P )  (13) (a l so  see F r i s c h  

et  al. (12) a n d  W o l f r a m  (43)) p r o v e d  t h a t  a c e r t a i n  ce l lu l a r  a u t o m a t o n  l a t t i ce  

gas  s h o w s  f lu id - l ike  b e h a v i o r  in  t h e  m a c r o s c o p i c  l im i t  o r  m o r e  p r ec i s e ly  

t h a t  m e a n  q u a n t i t i e s  o b e y  t h e  t w o - d i m e n s i o n a l  N a v i e r - S t o k e s  e q u a t i o n s .  
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This work showed for the first time that lattice gases are an alternative to 
common numerical techniques in modeling fluid dynamics. The idea of lat- 
tice gases is rooted in the knowledge that the form of the dynamical equa- 
tions of a fluid is entirely determined by inherent microscopic symmetries 
and conservation laws. While finite-difference and finite-element methods 
solve discretized Navier-Stokes equations with all the well-known 
problems of these methods, the lattice gas method discretizes the phase 
space of a simplified ideal gas. This results in simple and numerical 
well-behaved algorithms well suited for parallel computation. 

The paper by Frisch et  al. initiated rapidly increasing interest in 
cellular automata as a tool for solving complex physical problems. Good 
examples are flow through porous media, (34) acoustic wave propagation 
in inhomogeneous media, ~19) a model for surface tension, ~1) and the 
simulation of various simple boundary layer problems. (26) 

In the last few years many lattice gas automata (LGA) have been 
proposed for hydrodynamic simulations. (4'28) The original FHP model has 
been extended by the introduction of rest particles and appropriate collision 
rules(8); colored particles have been added to simulate two-phase flow such 
as immiscible fluids, ~35) stratified fluids, ~23) and autocatalytic reactions. ~5) 
Even external forces can be incorporated for plasma flow simulations. (zg) 

Although a lattice gas was already proposed for three-dimensional 
hydrodynamic simulations in 1986 by d'Humi6res etaI . ,  ~9) only very few 
applications have been reported. One of the reasons may be the extremely 
complicated collision rules of this "face-centered hypercube" (FCHC) 
model. (17) An interesting alternative to the FCHC model is the pair inter- 
action lattice gas (PI) proposed by Nasilowski. (3~ This lattice gas runs in 
arbitrary dimensions and has simple collision rules. But there is no rose 
without a thorn: the viscosity is not isotropic. This was derived theoreti- 
cally by Nasilowski. In parallel we have measured the relaxation of waves 
propagating in various directions and have calculated the physically 
relevant components of the viscosity tensor (see Section 3) which we will 
compare with theoretical predictions. 

The degree of anisotropy is rather strong: the shear viscosity varies by 
a factor of two between certain angles. Therefore, one may ask if such an 
automaton can successfully be used in the simulation of fluid flows. To get 
a hint to the answer, we have chosen some well-known problems for 
reference: the flow past a cylinder (ideally of infinite length) and past a 
sphere. This is discussed in Sections 5 and 6. 

2. T H E  PAIR I N T E R A C T I O N  LATTICE G A S  

The dynamical behavior of a lattice gas is mainly dominated by the 
symmetry properties of the underlying lattice and the built-in conservation 
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laws. Due to insufficient symmetry of its square lattice, the first deter- 
ministic lattice gas (HPP)  (is) reproduces only isotropic sound waves, 
whereas the momentum flux is anisotropic. Ten years later the F H P  lattice 
gas with the higher symmetric hexagonal lattice had success in simulating 
Navier-Stokes equations. Unfortunately the F H P  lattice cannot be 
extended to three dimensions, so one has to proceed to four dimensions 
and project the results back. But this extension of FHP,  called FCHC, has 
extremely complicated collision rules ~17~ and requires much computational 
resources. 

The pair interaction lattice gas (PI) is an attempt to unify the 
advantages of the H P P  and the F H P / F C H C  models. It was constructed 
with the aim of three-dimensional hydrodynamic simulations with simple 
and deterministic collision rules. 

In this section we describe the pair interaction lattice gas. For  brevity 
we restrict ourselves to a more phenomenological presentation. Readers 
more interested in the explicit derivation of the statistics and the fluid 
dynamical equations are referred to Nasilowski. (3~ 

In order to realize arbitrary dimensionality, PI adopts the square lat- 
tice from the H P P  lattice gas in spite of its insufficient symmetry proper- 
ties, but only the nodes with even or odd coordinate pairs are used (see 
Fig. 1). In D dimensions each node consists of 2 D cells, corresponding to 
the 2 D links to the nearest neighbors. A cell can be occupied by at most one 
particle (exclusion principle). The updating (time step) is composed of two 
successive steps as usual, the interaction between cells and the propagation 
of the particles to the nearest-neighbor nodes. 

Now the required symmetry to force the momentum advection term to 
be isotropic is provided by an additional degree of freedom, due to a some- 
what strange definition of the momentum of the particles: The momentum 
mi of a cell i is defined componentwise by 

mi~:=nihi~ci~, i = 1,..., 2D; ~ = 1,..., D (1) 

0 0 0 0 0 

�9 �9 �9 | 

- . . /  
0 0 0 0 0 //-, . ,  

�9 �9 �9 | 

0 0 0 0 0 

Fig. 1. Lattice structure of the PI model in two dimensions. Particle positions at even and 
odd times are shown as white and black circles, respectively. The arrows indicate the four 
possible particle velocities. 
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Fig. 2. The cellular structure of the PI model. Left: All the local cells (indicated by the 
squares) belonging to one of the lattice nodes (indicated by the dot in the middle). Right: One 
of the cells in more detail. Each circle corresponds to a bit in the computer. 

where ni e {0, 1} is the mass bit, hi= ~ {0, 1 } is the m o m e n t u m  componen t  
and ci~-- _+1 is the componen t  of the propaga t ion  velocity. Thus the 
m o m e n t u m  is represented by D addit ional independent  bits, corresponding 
to D components .  This allows the m o m e n t u m  to be not  necessarily parallel 
to the p ropaga t ion  velocity of the cell; instead it fluctuates a round  this 
direction as shown in Fig. 2. 

The collision step consists of successive interactions between pairs of 
cells along the coordinate  axes (Fig. 3 shows this for the two-dimensional  
case). Possible collisions are constructed according to the conservat ion 
laws for mass and m o m e n t u m  and according to the strategy to exchange 
as much  as possible in order  to minimize dissipation. ~ls) A symbolic 
description of  the collision rules is given in Fig. 4 as an example for 
a horizontal  pair. Due  to the modular  structure of this lattice gas, the 
interaction rules are the same for any pair of cells in any dimension. This 
simplifies the code and the extension to higher dimensions. 

2.1. Hydrodynamic  Equations 

As expected for a lattice gas with exclusion principle, Nasilowski gets 
a distr ibution function of Fermi-Di rac- type  for the occupat ion of  a cell. In 
a similar way as this has been done for F H P / F C H C  models,  he obtains the 

1st step 2nd step 

Fig. 3. Subsequent formation of horizontal and vertical pairs of interacting cells in the 
collision process. The "process" is instantaneous (it takes no time in the model) and local 
(it does not involve any cells located at different lattice points). The squares represent the four 
local cells; their velocity vectors are indicated by the arrows. 



Pair Interaction Lattice Gas Simulations 167 

,, " o +  = " o +  

~ g o -  ~ O O -  

'~~ O 0  ~ O 0  

~ O 0 -  ~ O O ~  

\ J 
o o  = 

- o o  : 
\ 

~/ - O  �9 ~ 0 �9 

~1 � 9  - - ~  ~ O 0 -  

t ~' 
~~ O O  ~ O 0  

~ O 0  ~ O 0  

Fig. 4. The pair interaction rules, illustrated for a "horizontal" interaction between cells a 
and b. Black circles indicate occupied cells and white circles indicate empty cells; the particle 
momentum is represented by arrows. When only one cell contains a particle and the other is 
empty, that particle can "spontaneously" change its velocity (jump to the partner cell) without 
changing its momentum (rule 10). 

hydrodynamic equations for three regimes from a Chapman-Enskog-type 
expansion: 

(a) Inviscid, incompressible flow 

(b) Inviscid, compressible flow 

(c) Viscid, incompressible flow 

The lattice gas shows weak compressible behavior. To analyze the 
dissipation of the compressible effects, we have to derive the hydrodynamic 
equations for the fourth regime, namely viscid, compressible flow. The 
hydrodynamic variables, the mass density per cell p and the momentum 
flux density q, are defined by 

p : = 2  D ~ ( n i ( r , , t , ) )  (2) 
i 

q : = 2  D ~ ( m ~ ( r , , t , ) )  (3) 
i 

where the ( . )  denote ensemble averaging. The subsequent derivation 
proceeds from Eqs. (91) and (78) in Nasilowski. (3~ The mass flux Mk and 
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momentum flux Qjk as functions of p and q including the dissipative terms 
with coefficients Tjlkm read 

1 - p  1 
Mk = 2 ~ qk -- ~ OkP (4) 

(1 _ p ) 2  
+ 4 (2 _p)2p qjqk- Tj~kmOmq, (5) 

Summation over repeated indices is implicit unless otherwise specified. 
Here it does not apply to the 6j~. Unfortunately, the viscosity t e n s o r  Tjlkm 
is not isotropic, due to a lack of symmetry of the underlying square lattice. 
The macrodynamic equations arise from inserting the above fluxes in the 
continuity equations resulting from the built-in conservation laws 

Otp + O~Mk = 0  (6) 

Otqj+O~Qjk=O (7) 

The coefficient of the undesired q2 term in the momentum flux vanishes 
only for a mean mass density of p = 0.5. Nevertheless, small density fluctua- 
tions are needed, so we set p = 1/2 + ~ and obtain by Taylor expansions of 
the fluxes (4) and (5) with (6) and (7) 

Ot~+Ok ~ - -~  qk--~OkOkf=O (8) 

c~,qj+~?k[26j~+(~+4#)qjqkl-- Tjzkm~?kc3mq,=O (9) 

It is not possible to obtain a compressible hydrodynamic regime including 
dissipation without terms of mixing orders in the expansion parameter e 
of the ChapmamEnskog-type expansion. This is similar to the FHP lattice 
gas (compare Frisch et a/.(12)). 

We distinguish two cases: 

1. Very small deviations of the density 

2. Density fluctuations comparable to the momentum flux 

For the first case of very small density fluctuations compared to the 
momentum flux we assume the following orders of magnitude: 

= o ( ~ ) ,  q = o(~),  c~, = o(~),  ,L = o(~)  ( m )  
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Up to 0(53 ) we get the hydrodynamic equations for slightly compressible 
flow with ~q = u and 4t~ = p', 

~?tp' + ~kUk = 0 (11) 

~ tblj q- ~k(Ujblk q- POjk) -- Tjlkm~kOmldl = 0 (12) 

For the pressure p we used the "isothermal" relation p = c2p ', with c~ = x/�89 
being the speed of sound. The value of c, was confirmed by our previous 
measurements. (42) When the density perturbation is of the same order of 
magnitude as the momentum flux we have 

= o ( ~ ) ,  q = o ( ~ ) ,  0t = o ( ~ ) ,  ~r = 0 ( 5 )  (13)  

This alters only the continuity equation. Using the above relations for p' 
and u, the equations for the full compressible regime up to O(53) read 

8 tp '  "~- ~kUk -- OkD U k -- ~6kOkP = 0 (14) 

Otuj + Ok(U;Uk + p6;k) -- Tjl~mOkSmUt = 0 (15) 

In contrast to the slightly compressible regime (12), we obtain two addi- 
tional terms in the  continuity equation. The last one is an extra dissipation 
term, which should affect the compressional viscosity, as will be discussed 
below. 

3. THE V ISCOSITY TENSOR A C C O R D I N G  TO THEORY A N D  
M E A S U R E M E N T S  

The first measurements of transport coefficients of the pair interaction 
lattice gas were by Wolf-Gladrow eta[. (42) They applied two different 
methods in order to determine the shear viscosity and the speed of sound: 
Smoothing of a discontinuity in the velocity distribution and relaxation of 
wave-shaped velocity perturbations (see also ref. 7). 

The relaxation method determines the dissipation by a measure of the 
relaxation of an initial wave-shaped perturbation of the velocity. The initial 
wave consists of a transverse and a longitudinal mode, in order to 
determine the shear viscosity and the bulk viscosity, respectively. The 
longitudinal mode induces an extra density wave. Here the components of 
the viscosity tensor Tjtkm are obtained with the relaxation method in 
various directions. 

We restrict our considerations concerning the viscosity tensor to two 
dimensions because of the modular structure of the lattice gas algorithm 
(see previous section). Three-dimensional experiments are not expected to 
give any new information about the components of Tjlkm. 
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It is obvious that Tjz~m has to be invariant under invariance trans- 
formations of the lattice gas. In such a way the number of independent 
components (16 in two dimensions) can be reduced. Each transformation 
may be described with a matrix A o. and the tensor transforms according to 

T~bca= TflkmAjaAibAk~Ama (16) 

If A o. is an element of the isometric group, then 

T'b~a= Tj.,k m (17) 

We apply a reflection at the Xl axis: 

It follows that all components with three equal indices are zero: 

Tm2 = T1222 = T1211 = Tll21 

= T2221 = T2111 = T2122 = 7"2212 = 0 (18) 

This reduces the number of unknown components to eight. 
For  the subsequent derivations we will use the full compressible 

equations, (14), (15) since we do not know the relative magnitudes of the 
longitudinal density and velocity waves. But we comment on the differences 
from the use of the less compressible regime (11), (12) at the end of this 
section. If we assume u and the density perturbation p' to be small enough 
to drop the nonlinear terms in (14), (15), we get 

~,p' + ~ j U j - - ~ k ~ k p ' = O  (19) 

OtU / q- Ojp -- TjlkmOk~mU , ---- 0 (20) 

Based on this set of linear equations, we will determine the dissipation by 
measuring the relaxation of a wave-shaped velocity perturbation. The wave 
consists of a transverse mode with amplitude tJ~ and a longitudinal mode 
with amplitude fi)l: 

uj(ri, t ) =  [ ~  exp(- -a t )  + ~.1 exp ( -O t ) ]  exp(iktrl) (21) 

where 

= 0 (22) 

= 0  (23) 
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eok is the Levi-Civita tensor. Coupled to these modes are corresponding 
density waves of the form 

p'(r i, t )=  [p ' ;  e x p ( - a t ) +  p,II exp ( -0 t ) ]  exp(iklrt) (24) 

To determine the angular dependence, we have to apply the method in 
various directions relative to the lattice. First we consider the more special 
case of a wave of the form (21) traveling along one of the axes of the 
coordinate system (e.g., the x~ axis) so that the modes of (21) separate. 
Then, by representing the t e n s o r  Tjlkm in another coordinate system rotated 
by an angle 0, we return to generality and obtain the dependence of 
the appropriate relaxation parameter on the angle 0. Therefore we use the 
well-known rotation matrix 

cos(0) sin(0)) (25) 
A(0)= -s in(0)  cos(0)J 

and obtain the rotated tensor according to (16). 

1. Transverse mode. Inserting only the transverse mode u~ in the xl 
direction in (19) and (20), it follows with (18) that 

p'• = 0  (26) 

O- = k2  Tl122 (27) 

as expected for a transverse wave. We obtain the relaxation parameter a(0) 
according to the above-described procedure using (16) with (25) and 
k=k2:  

where 

a(O)=k2[acos4(O)+fisin4(O)+l~sin2(O)cos2(O)] (28) 

= T;122 

/~ = T;2H (29) 

u = T;111 + T~222- T;212- T h e 1 -  T;~2~ - T~.~ 

2. Longitudinal mode. For a longitudinal mode along the Xl axis 
(k=kl ) ,  Eq. (19) becomes 

- 0 p ' l l +  ikull + ~k2p 'll=O 

With (18) and p = c~p' the momentum equation (20) yields 

--Oull + ic2kp'll + Tlallk2u I1= 0 

(30) 

(31) 
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Inserting (30) in (31) gives the characteristic equation 

0 2_Ok2(Tm~ + 1)+c2k 2+1 4 ~k Tin1 = 0 

with solution 

01, 2 = ~-  Till1 

(32) 

and approximately for long waves (k ,~ 1) 

01,2 ,,~ k---2 ( Tllll + ~ ) +_ iCs k (34) 

with Cs = x/�89 accoding to Nasilowski/3~ The shortest wavelength used in 
the experiments was 95 nodes, corresponding to a wave vector of k m a  x = 

3.3 x 10 -2. Thus, the long-wave approximation is fulfilled. The imaginary 
part of 0 (csk = co) causes the relaxation of the longitudinal modes to be 
modulated by an oscillation in time. 

In a similar way as for the transverse mode, (34) leads to the relaxa- 
tion parameter O(~b): 

k 2 [  2 1] 
0(~b)1,2~- ~cos4(~b)+xsin4(~b)+rsinZ(~b)cos (~b)+~ ___io (35) 

with 
= T~lll 

1s = T~222 

= T~211 + T~122 + T1212 "}- T2121 -}- T1221 + T2112 

When the same derivation is made using the less compressible regime (11), 
(12) instead of Eqs. (14), (15), the term 1/9 in (35) disappears. Thus the 
extra dissipation term in (11) results in an offset in the relaxation of the 
longitudinal mode. We will check our experimental results to see if the use 
of the full compressible equations (14), (15) is necessary. 

With the assumptions above we are now able to determine the physi- 
cally relevant components of the viscosity t e n s o r  Zjlkm (e.g., the coefficients 
of the dissipative terms in the momentum equation) by measuring the 
relaxation of the initial velocity perturbations in various directions 
(represented either by the wave vector k or by the angle ~b). Fitting the 
results of these measurements to (28) and (35) should give six coefficients 
containing the eight independent components of Tjtkm. 

+ )+csk[ ( 1111 lj2 133  

~<1 
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3.1.  R E L A X A T I O N  M E A S U R E M E N T S  

We performed our measurements on a square domain of 512 x 512 
nodes with periodic boundary conditions in both directions. The relaxation 
curves were obtained by averaging the velocities along lines perpendicular 
to the wave vector at each time step. Then the components of the initial 
waves (21), (24) were extracted by a Fourier transformation. 

Since the averaging line must be approximately steplike, the angle ~b 
cannot be chosen arbitrarily. The components of the wave vector k have to 
be multiples of the x and y increments of the step algorithm in order to 
comply with the periodic boundary condition. 

A typical set of the measured relaxation curves is shown in Fig. 5. The 
small oscillations of the relaxation of the transverse mode (solid line) are 
supposedly caused by a weak coupling to the longitudinal mode. Its 
strength varies with ~b and even when solely a transverse mode is initialized 
a longitudinal mode of small amplitude (lower by an order of magnitude) 
is induced. 

The relaxation parameters o-(~b), 0(~b) and the speed of sound cs are 
calculated by least square fits of the measured relaxation curves to 
expressions (28) and (35). 

For  sufficiently small mean velocities the results are independent of 
wavelength and mean velocity. 

The experimental results are 

= 0.46 

/3 = 0.46 

= o . o 2 )  

1 

0.8 

0.6 

0.4 

0.2 

O.2 

-O.4 

0.6 

-0,8 

-1 

for the transverse mode 

I00 200 300 400 500 600 700 800 900 1000 

time 

Fig. 5. A typical set of the measured relaxation curves. The exponential decay of the 
transverse mode and of the oscillating coupled longitudinal modes (cosine wave for u II and 
sine wave for p') are represented as functions of time. 



174 Vogeler and Wolf-Gladrow 

and 

( = 0.42) 
! 

~c = 0.42) for the longitudinal mode 
/ 

z = 1.69J 

From similar calculations for other lattice gases we expect an error of the 
order of 10%. (12) For  the speed of sound c, we found a value of c ,=0.58,  
a very good confirmation of the theoretical value of c,=x/�89 
A further verification of our results is their self-consistency, since from (35) 
and (28) it should hold that 

~ + x - # = z - ~ - f l  (36) 

(37) 

and we obtain values of 0.82 for the left-hand side and 0.77 for the right. 
Within the expected error of 10% we can consider the above relation as 
satisfied. 

Fitting our experimental results to the relaxation of the longitudinal 
mode derived from the less compressible regime (11), (12) would yield 

~=0.53] 
x = 0.53) for the longitudinal mode 

/ 

z = 1.91) 

The following comparison with theoretical predictions should clarify which 
regime we have to use in order to achieve maximum agreement with 
theory. 

3.2. C O M P A R I S O N  WITH THEORETICAL VALUES 

In parallel to our experiments Nasilowski (3~ has calculated the com- 
ponents of the viscosity tensor in the viscid, incompressible regime using 
some Boltzmann-type assumptions which concern the absence of correla- 
tions between pre- and postcollision states. Although this assumption is 
necessary to get any result, it is not justified by any further argument. 

For  the longitudinal mode which is coupled to density variations, only 
the form of the angular distribution of the relaxation constant is reliable 
(Nasilowski, personal communication, 1991). From the theoretical expres- 
sion of the viscosity tensor, denoted by 

Tj,em = ~[36j, ak,~ + 6jmak,(1 + 2{ink)- 2(Sj,km] (38) 
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with 

for m > k  

for m<~k 

one gets 

and 

= 0.50] 

 --Oo.SO; 
/~= 

for the transverse mode 

= 0.33 

K = 0.33 ? 

= 1.67) 

for the longitudinal mode 

Figures 6 and 7 show the experimental results and the theoretical predic- 
tion according to (38) in polar representation. The relaxation of the trans- 
verse mode is represented in Fig. 6 and the relaxation of the longitudinal 
mode in Fig. 7. 

A comparison with our measurements shows a rather good agreement 
for the transverse mode: the angular distribution shows the expected form, 
the values of e and/~ differ by only 10% from the theoretical values, and 
the contribution of the # term is negligible. At first sight one finds signifi- 
cant discrepancies for the longitudinal mode if one considers ~ and x. But 
again the angular distribution of the relaxation constant shows very good 
agreement with the theoretical calculations. 

Fig. 6. Polar representation of the relaxation of the transverse mode (shear viscosity) 
i/k2a(4) for the PI lattice gas versus angle ~. The fitted curve is represented by a solid line and 
the measurements by asterisks. The theoretical curve is represented by the dashed line. 

822/71/1-2-12 
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Fig. 7. Polar representation of the relaxation of the longitudinal mode 2i/k20(q)) for the PI 
lattice gas versus angle ~b. The fitted curve is represented by a solid line and the measurements 
by asterisks. The theoretical curve is represented by the dashed line. 

Compar ing our experimental results obtained by using the less com- 
pressible regime (11), (12) with the above values shows that the agreement 
between theory and experiment is much better when the more compressible 
regime is used. 

Thus we determined four o f  the eight unknown components of the 
viscosity tensor. The two components in the relaxation of the transverse 
mode are in good agreement with theoretical values. The angular distribu- 
tions of the relaxations are consistent with theoretical expectations in form 
and magnitude for the transverse mode and in form for the longitudinal 
mode. 

3.3. The Effect ive Viscosity in T w o  and Three 
Dimensions 

The relaxation measurements of the previous sections confirmed 
aspects of the theoretical expression of the viscosity tensor (38). Now 
we are interested in deriving an approximate effective shear viscosity. Its 
value must lie between the minimal and maximal values Vmi n = 0.25 and 
Vmax = 0.5 for two dimensions. We define an effective (scalar) shear viscosity 
by averaging the anisotropic viscosity over the circumference of a circle. 

In two dimensions the effective viscosity is therefore 

2D 1 f~'~ v(r &b (39) ~eff :~2-~ =0 
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For a one-dimensional shear flow of the form u=(ul (y ,  t), 0,0) the 
momentum equation (12) becomes 

OtUl = Tl122O2O2u 1 (40) 

Via the transformation (16) we obtain the viscosity in the polar coor- 
dinates with (38) 

Y(~) = T;122(~ ) = yo[-COS4(~) + sin4(~b)] (41) 

This already appeared in the relaxation of the transverse mode (28). With 
the theoretical predicted amplitude of v0=0.5 we obtain 2D Ve~ = 0.38, 
whereas the values of the experiments of the previous section yield Vo = 0.46 
and therefore v2D e~ = 0.35. 

These approximations need experimental confirmation. Therefore we 
computed the drag coefficients co of a cylinder versus the Reynolds 
number R. If the qualitative relationship between Co and R is satisfactory, 
the use of the effective shear viscosities should yield the best quantitative 
agreement with corresponding reference values. 

In three dimensions the shear viscosity is expected to be anisotropic 
too. The computation of drag coefficients of a sphere with the three 
dimensional version of PI should yield an effective value for the three 
dimensional shear viscosity by fitting the results to corresponding reference 
data. 

4. DRAG COEFFICIENTS FOR FLOWS PAST A CYLINDER 
AND A SPHERE 

4.1. Stokes" Solution 

The problem of viscous flow at low Reynolds numbers past a sphere 
or a cylinder was treated already by Stokes in 1851. ~38) The Navier-Stokes 
equation for an incompressible fluid reads 

1 
C~,Uj + u k OkUj = -- -~ 63j p + V ~kOkUj (42) 

with the equation of continuity 

~juj=o (43) 

Replacing the spatial derivatives by the inverse of a characteristic length 
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scale L and the velocity by a speed U, one gets the following estimate for 
the ratio between the advection term and the friction term: 

lUkO~Ujt/Iv ~ u j l  ~ ( U2/L )/(vU/L 2) = UL/v = R 

where R is the Reynolds number. From this argument it seems possible to 
neglect the advection term for low ( ~ 1) Reynolds numbers. For stationary 
flow the equation of motion then reduces to 

0 =  - 1 0 j p  + v Ok~uj 
P 

o=~j~j 
(44) 

Stokes solved Eq. (44) with appropriate boundary conditions [u---, u0 far 
away from the obstacles and no slip (u = 0) on its surface] for flow past a 
circular cylinder of infinite length and past a sphere. The solution for a 
sphere is symmetric along the axis through the center of the sphere and in 
the direction of the unperturbed velocity far upstream: 

3a a 3 ) 
u r = u o  1 - ~ r + F r  3 cos0 

Uo= _ u 0 (  1 3 a  a 3 ) 4r ~ sin0 (45) 

uo = 0 

where r, 0, and ~b are spherical coordinates and a is the radius. Note 
that Stokes' solution also shows upstream-downstream symmetry, 
u(x, y, - z )  = u(x, y, z). 

The drag force FD can be calculated by integrating the stress tensor 
So.(r, 0) over the surface of the sphere and inserting (45), 

FDi = f t -  adS njSij(r, O) 

with n being the surface normal; the stress tensor 

S o = p,5 o - vp(,~jui + ,~,uj) 

is given here in Cartesian form. 
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We define the drag coefficient CD and the Reynolds number R as 

~ F  D ~ a F  D 

CD :=pu~A pvuoAR (46) 

and 

uoa 
R := (47) 

V 

where a is the radius of the sphere or cylinder, FD is the total drag force 
(cylinder: total drag force per unit length), and A is the cross section 
perpendicular to the unperturbed velocity (other authors use slightly 
different definitions; some use the diameter in the Reynolds number or 
do not include the factor rc in the definition of the drag coefficient). Stokes' 
expression for the drag of a sphere then reads 

6Tg 
CD=-~ - (48) 

which is the famous Stokes formula of the textbooks. 
Unfortunately, Stokes' solution is not a consistent approximation of 

the solution of the Navier-Stokes equations at low Reynolds numbers. This 
will be shown by calculating the advection and friction term using (45). 
First we rewrite the advection term as a sum of a gradient and a rotational 
part: 

uk~?kU i = �89 2 + ejktCOkUl (49) 

where e)k=e~t,,3zum is the vorticity. Stokes' solution is still valid if one 
adds the gradient �89 2 to the pressure gradient [-see Eq. (44)] because it 
is the general solution for a conservative distribution of viscous forces. The 
problematic term is the part describing the interaction of the induced vor- 
ticity with the flow. Using Stokes' solution (45), one gets at large distances 
r from the obstacle an order of magnitude of u~a/r 2 for the rotational term 
and VUoa/r 3 for the viscous term. Stokes' approximation breaks down when 
the ratio of the two terms is of the order of 1, 

?. 

R - = O ( 1 )  
a 

i.e., at a critical radius rc = a/R. 
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4.2. Oseen's Approximation 

In 1910 Oseen (31) proposed a new approximation now known as the 
Oseen equation: 

1 
UkoOkUj = -- P 3 j p  + v '3kOkUj (50) 

The equation is linear in u and formally it looks like the linearized 
Navier-Stokes equation, which can be derived with the ansatz u = Uo + ut, 
where ul is a small quantity. But near the obstacle the perturbation of the 
upstrem velocity is not small, because of the no-slip boundary condition. 
The idea of Oseen was to take into account the advection of momen- 
tum. (33) The left-hand side of (50) is small near the obstacle and does not 
contribute much to the boundary values. At larger distances it gives the 
linearized form of the advection. For  the sphere an exact solution of the 
Oseen equation is not known. Although the Oseen approximation is 
justified only for low Reynolds numbers (R ~ 1), approximate solutions 
will be shown for a far larger range of Reynolds numbers. 

4.3. Oseen Flow Past a Sphere 

In the literature there are several expressions available for the drag 
coefficient of a sphere. The following formulas are all based on the Oseen 
equation. Oseen (3z) derived 

3) cD= - l+ n (51) 

based on an approximate solution. For  a higher order of approximation 
Goldstein (14) got an analytic expression (corrected after Shanks; see ref. 27) 

) 3 R2 71 R3 30179 R4q_ R 5 (52) 
CD = 1 + ~ R - + ~ 215040-----~ 17203200 

which is valid for R ~< 2 (for larger Reynolds numbers one needs numerical 
methods). The best analytically derived formula has been given by Mazur 
and Weisenborn. (27) The boundary condition at the surface of the sphere 
has been taken into account by an additional force (method of induced 
forces). They got 
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with 

1 
c~  = 8~ r + O(R) -  

[~(R) + 2~b(R) - 1 - 3R]2 ] 
(53) 

~(R) = 7 + In 2R - E i ( - 2 R )  

O(R) = 4 ~  [1 - (1 + 2R) e x p ( - 2 R ) ]  

and Y = 0.5772... is Euler's constant; Ei(x) is the exponential integral 

fo l - e  y E i ( - x )  =7  + l n  x -  Y dy, x > 0  

In Fig. 10 (see Section 4.5) we plot the above functions together with the 
empirical formula of Zahm, ~44) 

Co = 147rR o.85 + 0.24 for 0.2 < R < 200000 (54) 

and our numerical results. 

4.4. Oseen F l o w  Past a Cy l inder  

As mentioned before, Stokes' approximation breaks down in the far 
field of the flow past a circular cylinder of infinite length. Stokes found a 
solution of the differential equation which satisfies the no-slip boundary 
condition but diverges for large distances. An analytical solution of the 
Oseen equation has been given by Fax6n, (m but it is not available in a 
form which enables one to obtain values for the drag coefficient. (4~ In 1911 
Lamb (24) gave the following expression based on an approximate solution 
of the Oseen equation: 

C D = ~ -  --7--1n (55) 

Other expressions can be found in ref. 40. 

4.5. Drag  C o e f f i c i e n t s  by Lat t ice  Gas S i m u l a t i o n s  

Measuring drag coefficients with lattice gases serves as a proof for 
correct hydrodynamic behavior especially in the transitional range of 
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Reynolds numbers from laminar to slightly turbulent flow. It also provides 
an occasion to obtain quantitative results from lattice gas simulations. 
Two-dimensional flow simulations past a cylinder with the FHP lattice gas 
have been performed by Hayot and Lakshmi, (16) Duarte and Brosa, (1~ and 
recently by Kohring, (22~ who computed drag coefficients in two dimensions 
over four orders of magnitude in the Reynolds number (0.1 < R < 300). All 
authors obtained very good agreement with numerical and experimental 
data. 

In order to get an impression of the consequences of the anisotropic 
viscosity on the hydrodynamics of the PI lattice gas, we measured the drag 
coefficients of cylinders and spheres. We expect that the comparison with 
other data enables us to confirm the previously defined effective shear 
viscosity. For comparison we performed the two-dimensional simulations 
also with the FHP lattice gas. 

Compared to other numerical techniques, the computation of drag 
coefficients with a lattice gas is an easy task even for a body of arbitrary 
shape. Recalling that the lattice gas approach is based on the simplified 
molecular dynamics of an ideal gas, it is reasonable that the force acting on 
the body can be directly computed via the number of particles scattered at 
its surface. To compute the momentum exchange AP, we simply have to 
count all particles hitting the body at every time step and sum up their 
changes of momentum parallel to the mean flow direction Avl I. We express 
the total drag force FD from (46) as 

AP N 
Fo = A--7 = 2 A@ (56) 

i = 1  

with 

26o for PI 
N =  for FHP 

Note that Avl I is the change of momentum per unit volume of the lattice, 
which has to be rescaled by 8/9 for the PI model 8q = u. In the PI model 
one node contains 2 D unit volumes (cells). We have normalized mass and 
time step and use the distance between two lattice points as length unit 
(lu). For the FHP model one should remember that the hexagonal lattice 
scales with a factor of x/3 in one direction. Due to the alternating grid 
(compare Fig. 1) the distance between two nodes of the PI lattice is 21u. 
For the two-dimensional case we have to replace the area A by the 
diameter L of the cylinder in (46). 

The experimental setup consists of a channel twice as long as its width. 
Boundary conditions are periodic in the flow direction and free slip 
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(specular reflection of the particles) at the side walls. At the surface of the 
body a no-slip condition is imposed by reversion (bounce back) of hidding 
particles. When mapping the obstacle for the PI model one has to take 
into account that the PI model alternates between two slightly displaced 
sublattices. Therefore an obstacle defined on the whole lattice may have 
a different projection on each sublattice. A usage of the same representation 
for both sublattices would cause a worse representation of the obstacle shape. 
We tested both possibilities and found no significant effects on the drag. 

Starting the simulation with a homogeneous velocity distribution, we 
compensated the damping due to the obstacle by inserting velocity profiles 
of the initial form at the upstream boundary. These profiles were selected 
at random from an initially preparated store in order to avoid additional 
perturbations. This initial situation corresponds to a sudden insertion of a 
solid body in a homogeneous flow, but after an adequate relaxation time 
the perturbations caused by this shock have disappeared and the flow 
becomes steady. Then we sample the drag coefficient according to (46) as 
a function of time. 

The F H P  experiments were made with constant density of p = 1/6 
particles per cell and constant velocity of u0=0.21. Different Reynolds 
numbers were obtained by scaling the whole domain and the obstacle. 

The two-dimensional PI simulations were performed with constant 
grid sizes of (1024 x 512) nodes with an obstacle of 100 nodes in diameter. 

For  the three-dimensional simulations the domain size varied from 
(64 x 32 x 32) nodes with a sphere of 6 nodes in diameter for the lowest 
Reynolds numbers to (384 x 192 x 192) nodes with a 40-node sphere for the 
highest Reynolds numbers. The variation of the Reynolds number was 
done by initialization of different velocities for all PI simulations. The max- 
imum possible velocity was Umax = 0.21, corresponding to a critical Mach 
number of Merit = 0.36. Higher velocities degenerate to b/ma x during the 
simulation. For  M > 0.3 the drag coefficient is not solely a function of the 
Reynolds number; instead it depends also on the Mach number. (36) The 
aspect ratio (e.g., the ratio of the channel width to obstacle length) was 
always 0.2 for all experiments. 

Drag coefficients averaged over 10,000 time steps versus Reynolds 
numbers are displayed in Figs. 8-10. 

Drag coefficients for spheres and cylinders have been derived from 
wind tunnel experiments by various authors (see, for example, refs. 39 
and 36). In Figs. 8 and 9 we have additionally plotted the experimental 
results of Tritton (39) for reference. Figure 10 contains various analytical 
expressions for the drag coefficients together with the results of our numeri- 
cal investigation. A fit of the data to Zahm's curve can be achieved with a 
shear viscosity of v 3D = 0.21, which we propose as effective shear viscosity. 
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Fig. 8. Drag coefficient Co of a cylinder versus Reynolds number R for the FHP (*) lattice 
gas and experimental results from Tritton (39) ( + ) .  The shear viscosity is v = 0.55. 

It is interesting to note that Stokes' formula for the sphere systemati- 
cally underestimates the drag, whereas the values based on the Oseen equa- 
tion overestimate the drag. Obviously the increase of drag by interaction of 
the induced vorticity with the flow is overestimated in Oseen's approx- 
imation. The asymptotic value of the drag coefficient at large Reynolds 
numbers is dominated by this interaction. The calculation of the drag 
coefficients at large Reynolds numbers is therefore a good test of the 
nonlinear advection of the lattice gas. 

The Reynolds numbers are limited at low values by the ratio of signal 
to noise and by the mean free path, and at high values by the core memory 
of available computers (out-of-core computations are too ineffective) and 
the critical Mach number. We performed our simulations on a Convex 
C 2 with 64 MB and on a Cray Y-MP with 256 MB memory using the 
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Fig. 9. Drag coefficient C o of a cylinder versus Reynolds number R for the PI ( , )  lattice gas 
and experimental results from Tritton (39t ( + ) .  The Reynolds numbers have been computed 
with an effective shear viscosity of v~2~ = 0.35. 
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Fig. 10. Measured drag coefficient CD for a sphere versus Reynolds number R for the PI 
lattice gas. The Reynolds numbers have been computed with an effective shear viscosity of 
~3D 'e~ =0.21 (*). It can be seen that our results match the empirical formula of Zahm (-..) very 
well. Analytical results by the Stokes theory (--), Oseen theory (--), and Oseen theory by 
Mazur and Weisenborn (---) are shown for comparison. 

multispin coding technique in C. Typical values for the updating rates of 
the PI programs are 117 MUPS (million node updatings per second) for 
two dimensions and 29 MUPS for three dimensions on the Cray Y-MP 
(one processor). The Convex is approximately 32 times slower. A more 
detailed investigation of the performance of the PI model is found in ref. 41. 

4.6. Finite-Size Effects 

Besides other simplifications, lattice gas simulations deal with a 
relatively low number of particles compared to real gases. This limitation 
is caused by the restricted computational resources. In air, for example, 
under normal conditions we expect approximately NL=2.69•  
particles/m 3 (NL: Loschmidt number). A common lattice gas simulation 
contains not more than a few million particles. Especially when solid 
objects are involved, one has to check if the characteristic length l of the 
obstacle is still a macroscopic length. This means that it has to be large 
compared to the mean free path 2 a particle travels between two collisions, 
or that the Knudsen number Kn = 2/l has to be small. Otherwise so-called 
"finite-size effects" may become important and the Navier-Stokes equa- 
tions not longer hold. 

When simulating fluid flow through porous media, Rothman (34) was 
concerned with this problem of a relatively long mean free path of the F H P  
model running at low densities (approximately 10-12 Iu at a density of one 
particle per node). Also, Kohring (2~ found rather strong finite-size effects 
with the FHP-I  model. He computed minimal mean free paths of 8 lu for 
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FHP-I  and of 2-3 lu for FHP-II  and for his own, new proposed model. 
Recent mean free path measurements by Chen et aL ~3) yield a minimal 
value of 1.5 lu for the three-dimensional FCHC model. 

We measured the mean free path of the PI model in two and three 
dimensions in order to assure that the minimal length scale of our simula- 
tions (diameter of the obstacle) is large compared to the mean free path, 
or that the Knudsen number remains small. Because of the stepwise pair 
interaction algorithm, it is not so easy to detect the number of collisions at 
a given node. By definition we speak of a collision when any of the D + 1 
bits of a cell had been changed during the D interaction steps. Then we 
defined the mean free path 2 as 

~ : = S p l e l  (57) 
Ncol 

where Np is the total number of particles, Nco~ is the number of collisions, 
and the factor lel =~/-D is the propagation velocity of each particle. 
After relaxing 180 timesteps on a domain of 512 • 512 nodes, the two- 
dimensional result averaged over 20 timesteps on the whole domain is 

22D = 1.21/U (58) 

For  a cylinder of diameter 100 nodes this corresponds to a maximum 
Knudsen number of Kn = 0.012. 

The same experiment on a three-dimensional domain of 
128 x 128 x 128 nodes yields 

230 = 1.22N (59) 

leading to a maximum Knudsen number of K n = 0 . 1  for a sphere of 
diameter 6 nodes. 

Furthermore, the implementation of the no-slip boundary condition 
by reversion of the particles has been investigated for artifical consequences 
by various authors. Cercignani (2) solved a linearized Boltzmann equation 
for the Kramer problem and plane Poiseuille flow. He found a shift of the 
parabolic velocity profile of second order in the Knudsen number. Con- 
cerning the velocity profile at a solid boundary, Lavall6e et a/. (25) found 
agreement between classical boundary layer theory (36) and calculations 
using the lattice Boltzmann equation as well as F H P  lattice gas simula- 
tions. Ordinary boundary layer theory predicts the existence of a Knudsen 
layer of thickness ~ 2  at the boundary. Cornubert etal. ~6) developed a 
Knudsen layer theory for the F H P  model using the lattice Boltzmann 
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approximation. They concluded that the establishing of a Knudsen layer 
is prevented by the bounceback implementation, but the solid walls are 
effectively shifted by 1/4 lu or x/-J/4 lu, depending on the orientation of the 
boundary relatively to the lattice (due to the geometric scaling factor of the 
FHP lattice). Although these results may basically also apply to the PI 
model, this kind of anisotropy is not to be expected here because of its 
different lattice structure. Even a displacement of approximately 1/2 lu 
would increase the diameter of the obstacles, but the Reynolds number (47) 
and the drag coefficients (46) would not change significantly. Solely for the 
smallest diameter of 12 lu would this decrease the drag coefficient by about 
15%, but this is partially compensated by an increase of the Reynolds 
number of 8 %. 

In order to check our PI simulations for further finite-size effects, 
which may be independent of the mean free path (or collision), we 
enlarged, respectively shrunk, the domain size (including obstacle) by a 
factor of two and found less than 10% deviation in the drag coefficient 
of the cylinder, which is comparable to the standard deviation. Deviations 
of less than 0.5 % in the drag coefficient of the sphere are obtained for 
shrinking to 128 x 64 x 64 nodes and expanding to 384 x 192 x 192 nodes at 
a Reynolds number of 9. 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

Hydrodynamic equations for the compressible viscid regime have been 
derived and the dissipation of the pair interaction automaton has been 
investigated with the wave relaxation method. The shear viscosity is 
strongly anisotropic: the maximum of the shear viscosity is twice as large 
as the minimum. The radial dependence of the relaxation constant shows 
good agreement (same phase; differences in the amplitude of less than 
10%) with theoretical predictions based on the Boltzmann equation. The 
compressional viscosity is also strongly anisotropic. 

Effective viscosities of Veff= 0.35 in two dimensions and veff= 0.21 in 
three dimensions have been postulated for practical use. Simulations of 
hydrodynamic flows in two and (for the first time with PI) three dimen- 
sions were performed. The flow fields show qualitative agreement with 
wind tunnel experiments (formation and shedding of eddies at large 
Reynolds numbers). Despite the unusual behavior of the viscosity, the drag 
coefficients for flow past cylinders of infinite length and spheres show very 
good quantitative agreement with experimental values when the Reynolds 
numbers are computed with the effective viscosities. A fit of the drag data 
yields a viscosity of v 3D = 0.24. The range of investigated Reynolds numbers 
is 5-50 in two and 0.9-40 in three dimensions. 
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The low sensitivity to finite-size effects demonstrates the good 
suitability of the PI for low-Reynolds-number flow simulations in complex 
geometries (e.g., porous media). However, a detailed investigation of the PI  
model with respect to the results of ref. 6 seems to be useful, but is left for 
future work. 

Another question that remains to be investigated is the anisotropy of 
the collision process with respect to axis exchange. The fixed succession of 
interaction directions may cause an additional anisotropy, not detectable 
by the wave relaxation method. It  could lead to a nonvanishing lift of an 
obstacle when the flow is not parallel to a coordinate axis. This effect may 
be removed by random permutations of the interaction succession. 

The results---especially in three d imensions--  are encouraging for the 
simulation of more complex flow problems with the PI. Although PI needs 
more bits per node than F C H C  (32 compared to 24), we prefer the former 
because of its simple modular  structured interaction rules, allowing vec- 
torizable multispin coding (see refs. 21 and 41) with Boolean functions even 
in the three-dimensional case. A straightforward construction of a lookup 
table for F C H C  with its 224--= 16,777,216 possible states per node requires 
a memory  of up to 100 Mbyte. Some encouraging strategies to reduce this 
memory  requirement have been proposed by H6non (17) and Somers and 
Rein (37) (to 64 kbyte), but the applications of this model are still very rare. 
This may be due to its more complicated structure. 
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